

Modeling Flow and Residence Time Distribution (RTD) in an Industrial-scale Segmented Reactor by Coupling CFD and Monte Carlo Simulations

Team: <u>Hua Bai</u>, Adriana Vazquez, Amber Stephenson, Jorge Jimenez and Dennis Jewell

Acknowledgement: Paul Gillis

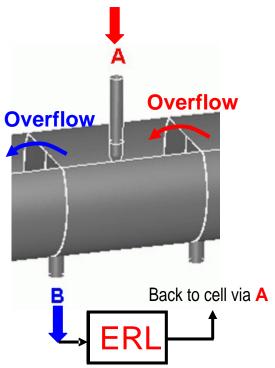
The Dow Chemical Company

Introduction

- Motivation
- Quantifying flow and RTD in a reactor is critical for defining appropriate reactor model to predict performance (e.g., yield and selectivity)
 - What reactor model to use (CSTR, PFR or combination)
 - Process optimization
 - Evaluation of different operating conditions
- This talk: RTD

CFD in Chemical Reaction Engineering V (Whistler 2008) Dow The Reactor (CFD modeling domain) **A7 A2 A1 A3 A5** Elevation view Cell F Cell E Cell D Cell C Cell B Cell A B3 || B5 || **B6** B2 III **B1** ♣ ERL back to Fresh Cell F via A6 feed External Recirculation Loop (same for each cell) excluded from CFD modeling domain. **ERL** Overflow direction Drain notch Liquid surfaces: Baffle 2 Baffle 1 Baffle 3 Baffle 4 Baffle 5 Tank volume: >31K gals (120m³)

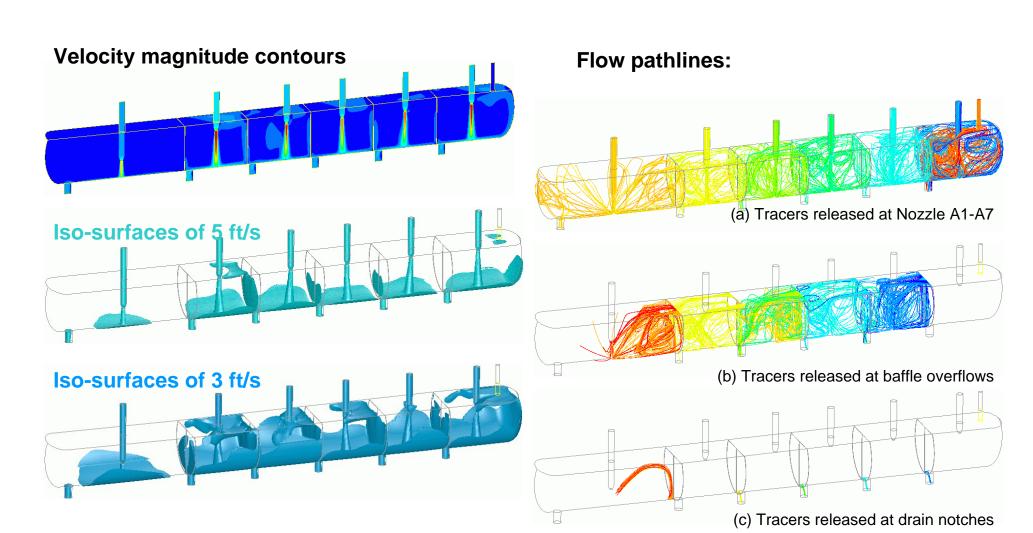
RTD Strategy



- Measuring RTD in the reactor during operation is expensive and difficult
 - Lab experiment scale-up is difficult
- *Modeling:* "2-step" approach
 - Step 1: obtain the flow field in the reactor (frozen in Step 2)
 - Step 2: obtain RTD (2 methods)
 - Method 1: Predict the outlet response to a pulse or step input at the inlet (transient simulation of passive scalar)
 - Method 2: Stochastic particle tracking to track trajectories of tracers (statistically calculate RTD)
 - Tracers released at inlets of each cell
 - Random Walk Model for dispersion due to turbulent eddies
 - Residence time recorded @ outlets as each tracer exits the cell
 - Method 2 chosen in this work
 - Advantage in dealing with multiple inlets/outlets
 - Advantage in coupling with Monte Carlo method

Unique Challenges

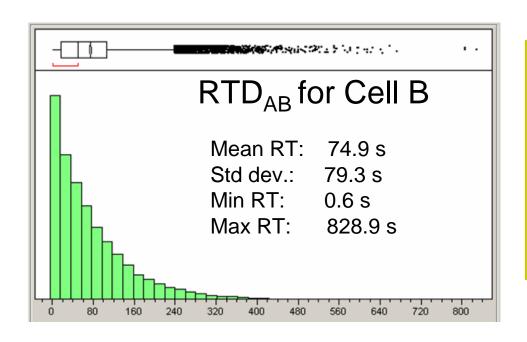
- Multiple inlets/outlets
- External Recirculation Loop (ERL), which is excluded from the CFD modeling domain



Cell RTD components without ERL

	Cell RTD	Tracers released @:	Tracers exiting cell @: (where RT recorded)
	RTD _{oo}	Overflow from previous cell	Overflow to next cell
	RTD _{OB}	Overflow from previous cell	Outflow via nozzle B
1	RTD_AO	Inflow via nozzle A	Overflow to next cell
	RTD _{AB}	Inflow via nozzle A	Outflow via nozzle B

Flow Patterns



RTD components w/o ERL

Key elements for accurate stochastic tracer tracking

- •-- Tracer release distribution @ inlets based on local mass flow rate
- •-- Sufficient number tracers tracked to produce statistically significant results
- Average 35,000 tracers tracked in each stochastic tracking
- •-- Proper integration time step

"How to" in FLUENT

Tedious "Inlet subdivisions" approach

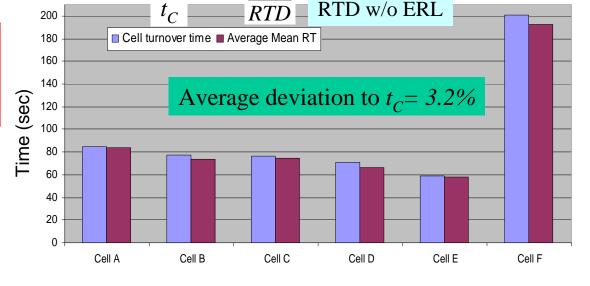
- Divide inlet into multiple sub-inlets based on velocity range
- Define "Injection" for each sub-inlet
- → # tracers ~ local mass flow rate

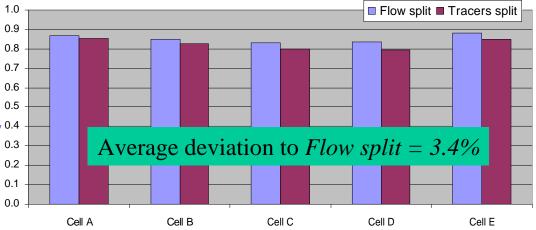
CFD in Chemical Reaction Engineering V (Whistler 2008)

Dow

Validation of RTD w/o ERL

$$t_C = \frac{V}{Q_T}$$


$$\overline{RTD} = \beta \left(\psi_{OO} \overline{RTD_{OO}} + \psi_{OB} \overline{RTD_{OB}} \right) + \left(1 - \beta \right) \left(\psi_{AO} \overline{RTD_{AO}} + \psi_{AB} \overline{RTD_{AB}} \right)$$


(Ave. weighted by tracer split and inflows)

 $\beta = \frac{Q_O}{Q_T}$ Ratio of weir overflow in inflows

 $\overline{RTD_{OO}}$ Mean RT for RTD_{OO}

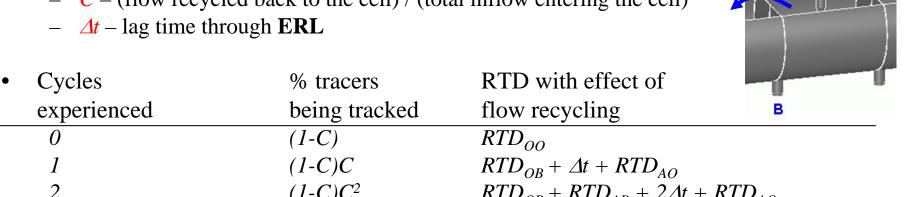
 ψ_{oo} Tracer-split ratio in tracking

Flow split (C): ratio of flow being recycled and total inflow 0.4
0.3

Tracers split: ratio of tracers exiting Nozzle B and total

Tracers split: ratio of tracers exiting Nozzle B and total injected tracers

CFD in Chemical Reaction Engineering V (Whistler 2008)

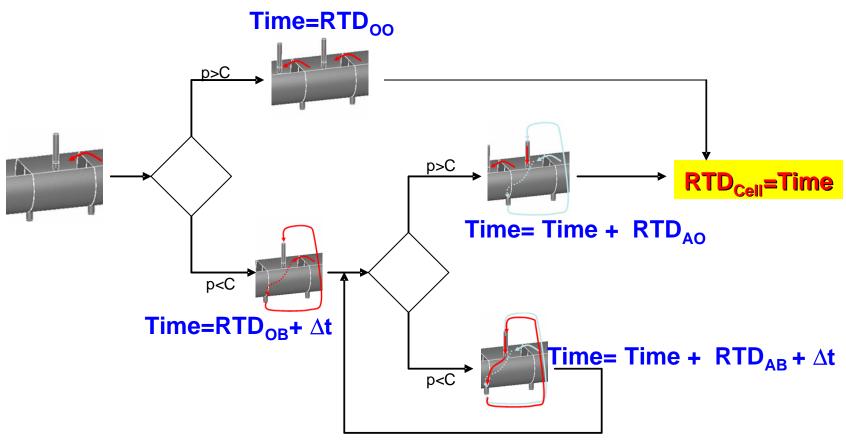

Include ERL in RTD

Overflow

Overflow

- Key information
 - Single-pass RTDs for each cell: RTD_{OO} , RTD_{OB} , RTD_{AO} , and RTD_{AB}
 - C (flow recycled back to the cell) / (total inflow entering the cell)

1 2 3	$(1-C)C$ $(1-C)C^2$ $(1-C)C^3$	$RTD_{OB} + \Delta t + RTD_{AO}$ $RTD_{OB} + RTD_{AB} + 2\Delta t + RTD_{AO}$ $RTD_{OB} + 2RTD_{AB} + 3\Delta t + RTD_{AO}$
 n	$(1-C)C^n$	$RTD_{OB} + (n-1)RTD_{AB} + n\Delta t + RTD_{AO}$

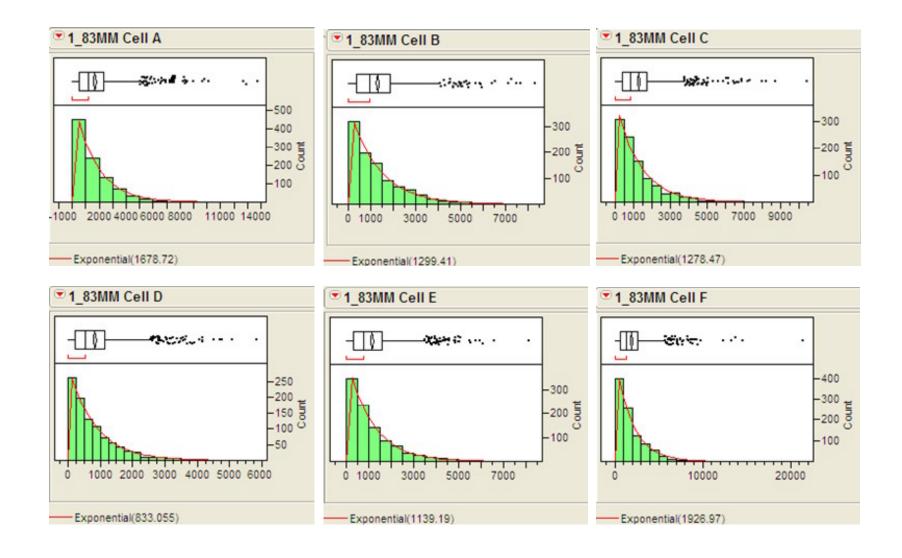

Number of cycles (*n*) needed to track all tracers

$$(1-C) + (1-C)C + (1-C)C^2 + (1-C)C^3 + \dots + (1-C)C^n = 1$$

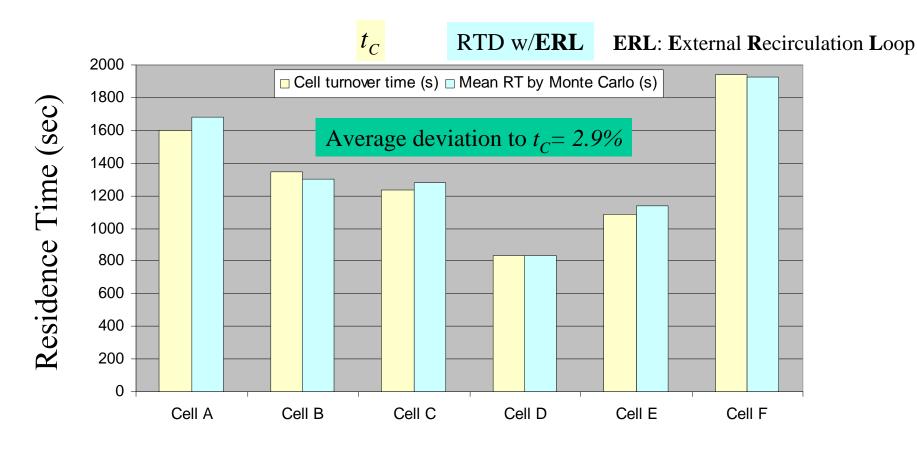
for example, if C=0.9, 99% tracers would be tracked after 43 cycles (n=43)

• "+" operations between the single-pass RTDs (raw data) → superposition through Monte Carlo simulation

Monte Carlo Schematic



- p random number, uniformly distributed between 0 and 1
- C (flow recycled back to the cell) / (total inflow entering the cell)


Monte Carlo simulation using the commercial software ARENA by Rockwell Automation Technologies Inc.

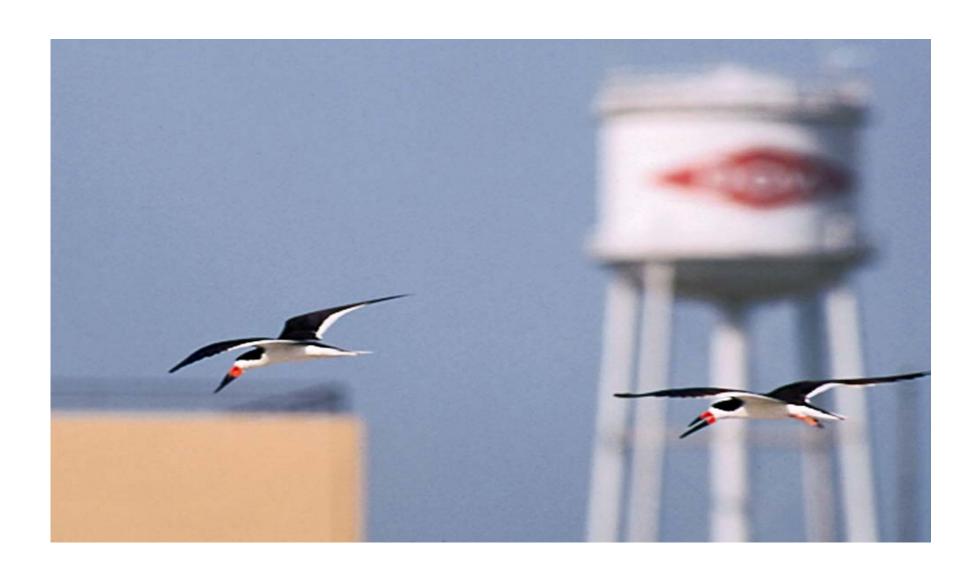
Histograms of RTD w/ERL

Validation of RTD w/ERL

Cell turnover time: $t_C = \frac{1}{2}$

$$t_C = \frac{V'}{Q_T'}$$

V' = the liquid volume in the cell + in the ERL


 $Q_T^{'}$ = (the total volumetric flow rate entering the cell) - (the flow being recycled back to the cell)

Summary

- A model was developed to predict RTD in a reactor with multiple inlets and outlets as well as external recirculation loop (ERL)
 - by coupling CFD stochastic particle tracking with Monte Carlo simulation (implemented in AREVA by Rockwell Automation Technologies Inc.)
 - validated by matching the reactor/cell turnover times
 - also by matching "flow split" with "tracers split"
- Critical for accurate RTD predictions during stochastic particle tracking
 - Tracer release distribution @ inlets proportional to local mass flow rate
 - Sufficient number of tracers tracked to produce statistically significant results
 - Proper integration time step

Thank You

This document was created with Win2PDF available at http://www.win2pdf.com. The unregistered version of Win2PDF is for evaluation or non-commercial use only. This page will not be added after purchasing Win2PDF.