COMPUTATIONAL FLUID DYNAMICS in CHEMICAL REACTION ENGINEERING V

June 15-20, 2008

Computational Fluid Dynamics Model of Viscous Droplet Breakup

LAURA DIETSCHE:

THE DOW CHEMICAL COMPANY

TONY NEUBAUER & STEPHANIE WHITED:

UNION CARBIDE CORPORATION, A SUBSIDIARY OF THE DOW CHEMICAL COMPANY

Challenge

- Many high-viscosity mixing / blending processes result in the formation of droplets of one material inside a matrix of a second material
- The final application often requires that the droplet size be reduced to an acceptable range -
 - Properties or characteristics may depend on DSD
 - Reactions may be induced in one of the two phases
- ■There may be further process requirements □energy efficiency (low △P)
 - □low capital cost
 - high throughput

Historic Droplet Breakup Literature:

- Breakup is impossible at high droplet to matrix viscosity ratios in simple shear flows
- However, breakup is possible in elongational flows

Critical Capillary number versus viscosity ratio $p (= \eta_d/\eta_c)$, in simple shear and in elongational flow (after Grace 1971).

Goals

- Develop a validated model that can predict viscous droplet breakup in complex flow geometries
- Provide insights into the fundamental breakup mechanisms
- Design optimal flow geometries for effective droplet breakup with efficient energy input

Modeling Methodology

COMPUTATIONAL FLUID DYNAMICS SET-UP

- Code: FLUENT
- Interface Tracking: "Volume of Fluids" Method (VOF)
- Laminar / Transient
- □ Geometry: SINGLE droplet flowing past obstacles
 - symmetry planes captures effect of droplet number density
 - tight mesh to capture interface

PROPERTIES

- Rheology: Carreau model
 - Shear Thinning
 - Droplet has higher viscosity than the matrix over the shear rates of interest

Density (droplet and matrix)

□Interfacial tension (No observed effect)

symmetry

Vary

- □Obstacle Layout
- □Initial droplet radius (circular / cylindrical)
- DROPLET Number density
- \Box Mass flux (V_{in})
- □Rheology
- Droplet Obstacle Alignment

Follow droplet interface with time as it flows past obstacles

Colors represent volume fraction of droplet phase

Multiple Mechanisms

1) "Stick-and-Pull": Higher droplet-to-matrix viscosity ratios cause the droplet to "stick" to the obstacles more tightly so there is more stretching as it is pulled off.

Time 1

Time 2

2) "Wire-Spreading": Lower droplet to matrix viscosity ratios are more easily spread apart by the obstacles and less likely to flow back together.

"Stick-and-Stay"

Compare Breakup at Different Flow Rates (different shear rates \rightarrow different viscosity ratios)

Inlet velocity: $V_1 < V_2 < V_3 < V_4$

Experimental Observation: break-up is more efficient at lower and higher rates

The Dow Chemical Company

Compare Two Different Droplet/Matrix Systems

System A

SystemB

Same Flow Rate

Similar Droplet-to-Matrix Viscosity Ratios

2D Model Validation

Compare the droplet breakup predicted by the model with experimental data:

- Experimental Data is in the form of droplet size distributions (DSD) for both the upstream and downstream mixtures
- \Box Model needs to account for initial DSD and determine final DSD

Effect of Obstacle Position

6-18-2008

Overall DSD Methodology

- Run the CFD droplet breakup simulation for
 - \Box 5 different obstacle alignment cases (A-E)
 - \square 8 different starting droplet diameters (80-1200 μ m)
- Use the Image analysis tool to get the DSD for each case
- Account for possible elongational breakage
 - Droplet Aspect Ratio > "Break-up Aspect Ratio" (BAR)
 - \rightarrow droplet will break up into the minimal number of equal parts so that the aspect ratio of each part is less than the BAR value
- Determine the overall DSD for each initial droplet size using probabilities of droplet-obstacle contact for each alignment
- Determine the combined DSD for all of the droplet sizes using the experimental values for the number of starting droplets in each size bin
- Compare to the experimental DSD values

Droplet-Wire Contact Probabilities

Determine probabilities for droplet "hitting" large wires in the two rows

Droplet

Size

microns

1200

700

550

450

350

250

150

P(R) =

P(S)

%

100

55.12

43.31

35.43

27.56

19.69

11.81

6.14

Β

%

60

30.38

18.76

12.56

7.60

3.88

1.40

0.38

- Define "hitting" to mean the droplet edge crosses the wire center
- Event R = droplet "hits" first wire Event S = droplet "hits" last wire
 - Assume R and S are independent
- P(R) = P(S) = G/L
 - where G = droplet diameter
 - L = distance between wire centers
- B: $P(R \cap S) = P(R) * P(S)$
 - C: $P(R \cap S^{C}) = P(R) * (1-P(S))$
 - D: $P(R^{C} \cap S) = (1 P(R)) * P(S)$
 - A: $P(R^{C} \cap S^{C}) = (1 P(R)) * (1 P(S))$
- Allow cases A and E
- Note: Probability of d es is always 100%

(R)) * (1-P(S))	78								
to be weighted evenly									
Iroplet hitting sr	maller wire								

A (split

w/ E)

%

0

20.14/2

32.14/2

41.69/2

52.48/2

64.50/2

77.77/2

88.09/2

C and D

%

20

24.74

24.55

22.88

19.96

15.81

10.42

5.76

Prediction vs. Experiment

Droplet Size Bins (um)		Droplet Breakup Simulation DSD Predictions							Ехр
Range	Ave.	Breakup Aspect Ratio (BAR)						DSD	
		1	2	3	4	5	6	inf	
7 to 54	30	21157.66	18739.04	18573.55	18526.43	18526.43	18526.43	18634.32	13651
55 to 100	78	13493.22	5578.46	4832.53	4719.96	4719.96	4719.96	4826.91	3960
101 to 200	150	1525.10	11814.66	12155.64	10384.53	10024.79	10024.79	10091.32	1543
201 to 300	250	33.84	43.83	555.31	2501.26	2818.70	2338.51	1847.68	141
301 to 400	350	0.00	33.84	75.79	44.76	56.65	506.44	839.57	49
401 to 500	450	0.94	0.00	0.94	0.00	30.40	60.81	247.78	9
501 to 600	550	0.03	0.00	0.00	32.90	32.90	32.90	108.10	2
601 to 800	700	0.03	0.94	0.03	0.00	0.00	0.00	26.79	4
801 to 1600	1200	0.00	0.05	0.96	0.99	0.99	0.99	18.00	9

6-18-2008

The Dow Chemical Company

Potential Model Enhancements / Challenges

□ Multiple starting droplets in single model

- degree of interaction depends on droplet number density
- requires large mesh and computational resources
- □ Miscibility / Diffusion effects
 - VOF method treats the phases as immiscible

Elongational and/or viscoelastic viscosity models

- Variations in Literature Observations concerning the Effect of Viscoelasticity on Droplet Breakup
- We do not currently have a code that has both viscoelastic modeling capability and a VOF method

Viscoelasticity Effect - Literature Observations

> Trends:

■Droplet elasticity → stabilizing

•Matrix elasticity \rightarrow destabilizing

Break-up Mechanisms:
stretching along flow axis
erosion
tip streaming
elongation in vorticity direction

e.g., PS droplet in PE matrix in simple shear (Couette) flow*:

•at low shear rates, viscous shearing forces dominate → drop elongates a small amount in the flow direction

 •as shear rates increase, normal stresses induce secondary flow perpendicular to flow direction → droplet takes on a diamond shape

•at high shear rates, get competition between normal stresses and shear stresses

 \rightarrow drops align perpendicular to flow direction

•at high enough shear rates \rightarrow droplet elongates and breaks along vorticity axis

*Frej Mighri, Michel Huneault; *In Situ Visualization of Drop Deformation, Erosion, and Breakup in High Viscosity Ratio Polymeric Systems under High Shearing Stress Conditions*; J. Applied Polymer Science, 100, 2006, pp 2582-91

Summary

The model has provided insights into some of the mechanisms that can cause droplet breakup

Helps to explain some puzzling observed phenomena

□We have generated ideas for new obstacle geometries

Some have been implemented

Although the 2D model results do not perfectly match the experimental data, they do seem to capture the trends

□The 3D model results provide further understanding of the complex interactions between the droplet and obstacles

Next Step: Develop ability to evaluate the effect of viscoelasticity on the droplet breakup in complex geometries

Requires new modeling capabilities