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Outline

Motivation

e Objective

e Production of polymeric nanoparticles via solvent displacement
¢ Influence of mixing on the precipitation process

e Static mixers: the Confined Impinging Jets Reactor

Background theory

e Precipitation model
e Flow field modeling: RANS and LES
e mPIV flow field measurements

Results

e Modeling of a test reaction: Barium sulfate precipitation
e Flow field in the CIJR: uPIV experiments vs Large Eddy Simulations

Conclusions and next steps
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Solvent displacement
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Particle Size Distribution

e Operating conditions influence PSD
— Initial reactants concentration
— Solvent to non-solvent ratio
— Mixing rate
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Particle Size Distribution
e Operating conditions influence PSD

— Initial reactants concentration
— Solvent to non-solvent ratio

— Mixing rate

e Precipitation time scale smaller or comparable to the
mixing time scale

e Micro reactors allow fast mixing
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Particle Size Distribution
e Operating conditions influence PSD
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Effect of mixing on PSD: experiments
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Effect of mixing on PSD: experiments
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Study outline

Modeling of PCL nanoparticles precipitation

Flow field Mixing Precipitation

Population Balance
RANS LES DQMOM-IEM | Equation solved with
QMOM

4 Y4

INVESTIGATION || Barium sulfate precipitation
with LES and VALIDATION: experimental data on
uPIV particle size

measurements
o AN J
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Precipitation model: effect of mixing

* Nucleation and growth rate modeled from
classical precipitation theory (Schwarzer and
Peukert, 2005)

e Supersaturation is produced by the instantaneous

reaction

BaCl, + Na,SO, ——BaS0, ({)+2 NaCl

* Mixing influences the reaction and therefore the

supersaturation build-up S0
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Precipitation model: aggregation

* A transport mechanism is responsible for bringing particles into close
proximity

c e ) Surface potential, V
e Two asymptotic limits (Smoluchowski, 1917)
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Flow field modeling .

With the Large Eddy Simulation approach a filter is
applied to the Navier-Stokes equations

The filtered velocity field is obtained

6.07

U(x,t):jG(r,x)U(x-r,t)dr -
The bigger scales of the flow, or large eddies are 210
solved exactly, while the smaller scales are modelled |
with a Subgrid Scale Model I
For example the Smagorinsky-Lilly 0.00

9.18

o =-2v,S, =-212S =-2(C,A)’S

The Reynolds Averaged Navier Stokes approach
averages in time Navier-Stokes equations and the
time averaged velocity field results

(U)(x) = leoT U(xt) dt
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Micro Particle Image Velocimetry

e PIV provides instantaneous velocity fields over global
domains (vs. point-wise methods)
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e Displacement of particles D (X;t',t") :_Ltrﬂv [X (1), t] dt
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uPIV and LES results — Re;= 64
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1PIV and LES results — Re; = 155
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UPIV and LES results — Re; = 292
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UPIV and LES results — Re;= 579
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Quantitative comparison: time averaged
velocity
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Quantitative comparison: RMS velocity
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A fully predictive model was developed to describe mixing and
precipitation
In the aggregation term a global collision efficiency is considered in order

to take into account the effect of repulsive forces of electrostatic and
hydrodynamic nature

The model was applied to the precipitation of BaSO, , good agreement
with experimental data was found

uUPIV measurements and LES prediction of the flow field in a CIJR at four
operating conditions (Re; = 64, 155, 292, 579) were compared

The flow field in the CIJR was proven by means of experiments to be non-
symmetrical and highly unsteady, and LES were able to predict these main
features of the flow

Quantitative comparisons in terms of first and second order statistics are
satisfactory, also considering the difficulties in matching the inlet
conditions between experiments and simulations, the issues related to
uUPIV resolution, and the (numerical diffusion)

Next steps are the application of the precipitation model to PCL
precipitation via solvent displacement process and the implementation of
the mixing and reactive model on LES
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Thank you for your attention
Any question?



