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Introduction

Problem of wetting in trickle bed reactors

CFD modeling and results

Short conclusion
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Fixed bed reactor

Most common type of gas-
liquid-solid reactors in the 
refining and petrochemical 
industries

Simplicity; low operating 
costs associated

Random packing or 
structured packing as solid 
catalyst

Diameter = 1m to more than 
5 m depending on the 
pressure
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Fixed bed reactor : configuration and regime in 
two phase gas-liquid flow

co-current downflow
co-current upflow
counter current

N. REINECKE. D. MEWES
Chemical Engineering Science. Vol. 51.
No. 10. pp. 2131-2138. 1996

Flow regimes

bubble flow

spray flow

pulse flow

trickle flowco-current downflow
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Trickle bed reactor in oil refining

Hydrotreatments of gasoils, atmospheric or void 
petroleum resids

Flow rates 
industrial reactor : Vsl =  0.1 – 0.8 cm/s    ;   Vsg = 1 - 10 cm/s
pilot reactor :  Vsl =  0.01 – 0.08 cm/s ;  Vsg = 0.1 - 1 cm/s

Properties
ρl = 700 - 900 kg/m3. ρg = 10 - 50 kg/m3

µl = 0.5 – 1.5 cP
σ

 

= 5  - 30 mN/m

Pressure up to 200 bars
Temperature up to 400 °C
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Wetting at the scale of the particle catalyst

Good wetting Poor wetting

n
e kCCD =∇2

The effect is asserted by solving a reaction-diffusion equation inside catalyst particle

0=
∂
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Dry part of the surface
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The effectiveness factor
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Consequences of a poor wetting
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Visualization of distribution and wetting using 
tomography at the scale of a pilot reactor

Liquid inlet
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Tomography for different particles

Alumina 2-4mm Extrudates 2.6mm Glass beads 2mm

Preferential path, poor distribution and wetting;
what about extrapolating 

to industrial reactor ?
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Prediction of wetting : experimental 
investigations
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El Hisnawi [1981]. Tracing method
Burghardt [1990]. Tracing method
Ring (1) [1991]. Tracing method
Ring (2) [1991]. Tracing method
Burghardt [1995].Tracing method
Pironti [1999]. Pressure drop method
Larachi [2001]. Neural networks correlation
Herskowitz [1983]. Reaction

large discrepancies
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Experimental investigations at IFP
Parametric study of wetting in a particles bed 

PIV method

wetting

L. Baussaron. PhD thesis. 2005

Caméra

Traitement

Caméra

Traitement

2 impulsions laser2 impulsions laser

LaserLaser

Polypropylène Polypropylène Polypropylène Polypropylène Polypropylène Polypropylène 
Situation to model using CFD
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VOF model in Fluent 6.3 code

After a systematic study, algorithms and methods 
have been selected

Explicit Scheme

Non iterative Time Advancement
CICSAM algorithm for volume fraction equation

Brackbill model is used in Fluent 6.3 concerning 
wall adhesion force
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Mesh generation

Special liquid inlet

Mesh Adaption
with respect to void fraction
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From 2D to 3D

Few hundreds thousands cells
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Example of a simulation result

Physical behavior reproduced 
qualitatively
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First qualitative comparison

CFDExperience
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Results : flow regimes

σs
(mN/m)

Θc
(°)

Ql *
(l/h) Flow regime

22 20 1 to 5

continuous film22 30 2 to 5

22 53 2 to 5

22 53 1 film formation with rupture

73 20 1 to 4 growth and decrease of a single liquid 
volume

73 89 5 independent drops
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Wetting fraction
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Wetting seems to be better predicted when the contact angle is 
high
Brackbill model correction ? 
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Hysteresis
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Film velocity

Velocity contours
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Quantitative results : static liquid holdup
Kramer. Ch. Eng. Sci. (1998)

contact 
angle (θ)

surface 
tension 

σs

CFD estimated static 
liquid holdup correlation

2D 3D Charpentier
10 30 6.40% 3.53%
10 50 7.70% 4.00%
10 70 11.27% 4.24%
30 30 6.84% 8.33% 3.53%
30 50 10.60% 9.77% 4.00%
30 70 16.65% 11.57% 4.24%
50 30 12.47% 3.53%
50 50 11.19% 4.00%
50 70 4.05% 4.24%

Situation studied is less representative of a real fixed bed for which the correlation was build
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Conclusion

In a simple situation :

VOF model gives qualitatively (and sometimes 
quantitatively) correct information concerning the wetting

For more quantitative results, one need better models 
concerning the expression of the interface force 
especially at the particle surface (contact angle)
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