Numerical investigation of catalyst wetting inside trickle bed reactors

A. Koudil, F. Augier, A. Royon-Lebeaud, L. Muszynski and Q. Yanouri Chemical Engineering Department IFP Lyon - FRANCE

- Introduction
- Problem of wetting in trickle bed reactors
- CFD modeling and results
- Short conclusion

Fixed bed reactor

- Most common type of gasliquid-solid reactors in the refining and petrochemical industries
- Simplicity; low operating costs associated
- Random packing or structured packing as solid catalyst
- Diameter = 1m to more than
 5 m depending on the pressure

Fixed bed reactor : configuration and regime in two phase gas-liquid flow Flow regimes

Computational Fluid Dynamics in Chemical Reaction Engineering V - June 15-20. 2008 Whistler. British Columbia. Canada

Trickle bed reactor in oil refining

Hydrotreatments of gasoils, atmospheric or void petroleum resids

Flow rates

industrial reactor : VsI = 0.1 - 0.8 cm/s ; Vsg = 1 - 10 cm/s

pilot reactor : Vsl = 0.01 – 0.08 cm/s ; Vsg = 0.1 - 1 cm/s

Properties

$$ρ_1 = 700 - 900 \text{ kg/m}^3. ρ_g = 10 - 50 \text{ kg/m}^3$$

 $μ_1 = 0.5 - 1.5 \text{ cP}$

 $σ = 5 - 30 \text{ mN/m}$

Pressure up to 200 bars

© IFP

Temperature up to 400 °C

Wetting at the scale of the particle catalyst

The effect is asserted by solving a reaction-diffusion equation inside catalyst particle

$$D_e \nabla^2 C = k C^n$$
The effectiveness factor
Wet part of the surface
$$C = C_0$$

$$\eta = \frac{1}{V_{cat}} \frac{\int k C^n dV}{k C_0^n}$$

Computational Fluid Dynamics in Chemical Reaction Engineering V - June 15-20. 2008 Whistler. British Columbia. Canada

Consequences of a poor wetting

Visualization of distribution and wetting using tomography at the scale of a pilot reactor

Innovation Energie Environnement

Computational Fluid Dynamics in Chemical Reaction Engineering V - June 15-20. 2008 Whistler. British Columbia. Canada

Tomography for different particles

Prediction of wetting : experimental investigations

Experimental investigations at IF

Parametric study of wetting in a particles bed

PIV method

© IFP

Situation to model using CFD

L. Baussaron. PhD thesis. 2005

Computational Fluid Dynamics in Chemical Reaction Engineering V - June 15-20. 2008 Whistler. British Columbia. Canada

After a systematic study, algorithms and methods have been selected

Explicit Scheme

© IFP

- Non iterative Time Advancement
- CICSAM algorithm for volume fraction equation

Brackbill model is used in Fluent 6.3 concerning wall adhesion force

Mesh generation

Special liquid inlet

Mesh Adaption with respect to void fraction -

Contours of Volume fraction (ethanol) (Time=7.4517e-04) Jul 03, 2007 FLUENT 6.3 (2d, dp, pbns, vof, lam, unsteady)

Computational Fluid Dynamics in Chemical Reaction Engineering V - June 15-20. 2008 Whistler. British Columbia. Canada

13

© IFP

Innovation Energie Environnement

Few hundreds thousands cells

Computational Fluid Dynamics in Chemical Reaction Engineering V - June 15-20. 2008 Whistler. British Columbia. Canada

14

Example of a simulation result

n D

Energie Environnemen

First qualitative comparison

Experience

CFD

Results : flow regimes

σ _s (mN/m)	Θ _c (°)	Q _I * (I/h)	Flow regime				
22	20	1 to 5					
22	30	2 to 5	continuous film				
22	53	2 to 5					
22	53	1	film formation with rupture				
73	20	1 to 4	growth and decrease of a single liquid volume				
73	89	5	independent drops				

Computational Fluid Dynamics in Chemical Reaction Engineering V - June 15-20. 2008 Whistler. British Columbia. Canada

17

Wetting fraction

Wetting seems to be better predicted when the contact angle is high Brackbill model correction ?

Wetted surface

© IFP

19

Film velocity

2.20e-0 2.09e-0

1.98e-01 1.87e-01

1.76e-0 1.65e-0

1.54e-01 1.43e-01 1.32e-01 1.21e-01 1.10e-01

9.90e-0 8.80e-0 7.70e-0

6.60e-1 5.50e-1

4.40e-02 3.30e-02 2.20e-02

1.10e-<mark>02</mark> 2.90e-05

© IFP

Falling film theory:

Velocity contours

$$V_f = \frac{\rho g \left(\frac{\delta}{2}\right)^2}{2\mu}$$

46

Computational Fluid Dynamics in Chemical Reaction Engineering V - June 15-20. 2008 Whistler. British Columbia. Canada

Quantitative results : static liquid holdup

Kramer. Ch. Eng. Sci. (1998)

contact	surface tension	CFD estimated static liquid holdup		correlation
angle (θ)	σ _s	2D	3D	Charpentier
10	30	6.40%		3.53%
10	50	7.70%		4.00%
10	70	11.27%		4.24%
30	30	6.84%	8.33%	3.53%
30	50	10.60%	9.77%	4.00%
30	70	16.65%	11.57%	4.24%
50	30	12.47%		3.53%
50	50	11.19%		4.00%
50	70	4.05%		4.24%

Situation studied is less representative of a real fixed bed for which the correlation was_build

Computational Fluid Dynamics in Chemical Reaction Engineering V - June 15-20. 2008 Whistler. British Columbia. Canada

© IFP

In a simple situation :

- VOF model gives qualitatively (and sometimes quantitatively) correct information concerning the wetting
- For more quantitative results, one need better models concerning the expression of the interface force especially at the particle surface (contact angle)

