TECHNISCHE UNIVERSITÄT MÜNCHEN

Numerical Simulation of Gas-Liquid-Reactors with Bubbly Flows using a Hybrid Multiphase-CFD Approach

Hybrid Interface Resolving Two-Fluid Model (HIRES-TFM) by Coupling of the Volume-of-Fluid (VOF) method and the Two-Fluid model (TFM)

TC1@T

using Open√FOAM

Dipl.-Ing. Holger Marschall Chair of Chemical Engineering Technische Universität München

Outline

- background & motivation
- problem statement
 - state-of-the-art (VOF & TFM)
 - hybrid approach (HIRES-TFM)

governing equations

- basic equation (VOF & TFM)
- basic idea & switch criterion (HIRES-TFM)
- numerical results
 - prototype examples (HIRES-TFM)
- outlook

Background Phenomenology of Multiphase-Flows – Process Technology

Motivation Phenomenology of Multiphase-Flows – Bubble Column Reactors

Motivation Phenomenology of Multiphase-Flows – Bubble Column Reactors

- fluid dynamics of two-phase flow systems in process apparatus and chemical reactors with transient flow structures
- fluid dynamics, reaction and mass transfer at gas-liquid interfaces of two-phase flow systems with spatial and/or temporal scales over more than 6 orders of magnitude

Problem Statement State-of-the-Art – Current Frontiers

requirements

- Higher Accuracy, Cutback of Conservatisms & Uncertainties
- Portability to New Geometries and Range of Parameters
- Enhanced Scale-Up Options

Problem Statement State-of-the-Art – Hierarchy of Numerical Methods

macroscopic & mesoscopic level

field averaging models (EE)

entity tracking models (EL)

interface resolving methods (EE)

microscopic level

Lattice Boltzmann

Monte Carlo

Degree of Detail & Computational Costs

Modelling Effort &

Complexity

Problem Statement Hybrid Approach

\rightarrow challenge

- Multiscale CMFD
- Large-scale CMFD

\rightarrow conceptual approach

 adaptive: as coarse as possible & as detailed as required

Spatial Resolution	Method	Fundamental Eqs.	Applicability to Practical Problems
$ \begin{array}{c} \text{low} \\ (\Delta x >> d)^* \end{array} $	Averaging Method (Homogeneous, Drift-Flux, Two-Fluid Models)	Averaged Field Eqs. + Constitutive Eqs.	high
intermediate $(\Delta x \sim d)$	Bubble Tracking Method (One-Way, Two-Way Methods)	Eq. of Bubble Motion + Constitutive Eqs.	intermediate
$\begin{array}{c} \text{high} \\ (\Delta x < d) \end{array}$	Interface Tracking Method (Front Tracking, Volume Tracking, Level Set)	Navier-Stokes Eq. + Surface Tension	low
$\frac{1}{(\Delta x \ll d)}$	Microscopic Method (Lattice Gas, Lattice Boltzmann Methods)	Translation & Collision of Pseudo Molecules	low

* *d*: bubble diameter, Δx : cell size

⇒ HIRES-TFM = Hybrid Interface-Resolving Two-Fluid Model

- **interface resolving algorithm VOF** for free surface flow regions as long as local computational grid density allows interface capturing
- **extended two-fluid model TFM** for dispersed flow regions where dimensions of fluid parts are comparable to or smaller than grid spacing

Problem Statement Hybrid Approach

 \rightarrow challenge

Open√FOAM

- Multiscale CMFD
- Large-scale CMFD
- \rightarrow conceptual approach
 - adaptive: as coarse as possible & as detailed as required

⇒ HIRES-TFM = Hybrid Interface-Resolving Two-Fluid Model

- **interface resolving algorithm VOF** for free surface flow regions as long as local computational grid density allows interface capturing
- **extended two-fluid model TFM** for dispersed flow regions where dimensions of fluid parts are comparable to or smaller than grid spacing

ိုလိ

bubbleFoamExt

Problem Statement Hybrid Approach

- interfacial friction
- interfacial tension
- turbulence
- mass transfer
- economic resolution of interfacial structures and dynamics: local adaptive mesh refinement (AMR)

interFoamExt

- drag force
- non-drag forces (lift force, turbulent drag force)
- polydispersity
 - (class method)
 - (method of moments)
 - (Monte-Carlo method)
 - interfacial area conc.
- coalescence and breakup
- turbulence incl. BIT
- mass transfer

Background & Motivation • Problem Statement • Governing Equations • Numerical Results • Outlook

Governing Equation Coupling of the VOF method and the TFM – basic equations

- continuity equation

 $\nabla \cdot \boldsymbol{U} = 0$

- momentum equation

$$\frac{\partial \rho \boldsymbol{U}}{\partial t} + \nabla \cdot (\rho \boldsymbol{U} \boldsymbol{U}) = -\nabla \boldsymbol{p} + \nabla \cdot \left[\mu (\nabla \boldsymbol{U} + \nabla \boldsymbol{U}^{T}) \right] + \rho \boldsymbol{g} + \boldsymbol{F}_{\sigma}$$

- topological equation (continuity)

$$\frac{\partial \alpha}{\partial t} + \nabla \cdot (\boldsymbol{U} \alpha) = \mathbf{0}$$

- mixture density & mixture viscosity

$$\mu = \alpha \mu_a + (1 - \alpha) \mu_b$$
$$\rho = \alpha \rho_a + (1 - \alpha) \rho_b$$

Open√FOAM

phase fraction equation (continuity)

$$\frac{\partial \alpha_{\varphi}}{\partial t} + \nabla \cdot \left(\overline{U}_{\varphi} \alpha_{\varphi} \right) = \mathbf{0}$$

- momentum equation

$$\frac{\partial \alpha_{\varphi} \overline{U}_{\varphi}}{\partial t} + \nabla \cdot \left(\alpha_{\varphi} \overline{U}_{\varphi} \overline{U}_{\varphi} \right) + \nabla \cdot \left(\alpha_{\varphi} \overline{R}_{\varphi}^{\text{eff}} \right) = -\frac{\alpha_{\varphi}}{\rho_{\varphi}} \nabla \overline{p} + \alpha_{\varphi} g + \frac{\alpha_{\varphi}}{\rho_{\varphi}} \overline{M}_{\varphi}$$

- + constitutive equations interfacial momentum transfer+ model equation
- interfacial tension

Governing Equation Coupling of the VOF method and the TFM – interface compression

- problem of VOF methods: accuracy and reliability of the numerical approach to ensure the interface remains sharp
- **basic idea for a sharp interface:** convective transport term, counter gradient (against num. diffusion), conservative & bounded

$$\nabla \cdot (\boldsymbol{U}_r \ \tilde{\boldsymbol{c}}(1-\tilde{\boldsymbol{c}}))$$

- scalar flux second-moment closure in complex combustion models for turbulent flames
 - *U*_r relative velocity between burnt and unburnt gases
 - \widetilde{c} progress variable

Governing Equation Coupling of the VOF method and the TFM – interface compression

- problem of VOF methods: accuracy and reliability of the numerical approach to ensure the interface remains sharp
- **basic idea for a sharp interface:** convective transport term, counter gradient (against num. diffusion), conservative & bounded

$$\frac{\partial \alpha_a}{\partial t} + \nabla \cdot \left(\overline{U}_a \alpha_a \right) + \nabla \cdot \left(\overline{U}_c \alpha_a \left(1 - \alpha_a \right) \right) = 0$$

where
$$\overline{U}_{c} = c_{\alpha} \left| \overline{U} \right| \frac{\nabla \alpha_{a}}{\left| \nabla \alpha_{a} \right|}$$

 $\overline{U}_{c} = \min \left[c_{\alpha} \left| \overline{U} \right|, \max \left(\overline{U} \right) \right] \frac{\nabla \alpha_{a}}{\left| \nabla \alpha_{a} \right|}$
 $1 \le c_{\alpha} \le 4$

Open√FOAM

- convection-based sharpening algorithm in the phase fraction equation for interface capturing
 - $\overline{U_c}$ artificial compression term acting normal to the interface
 - α_a volume fraction of phase a

Background & Motivation • Problem Statement • Governing Equations • Numerical Results • Outlook

Governing Equation Coupling of the VOF method and the TFM – switch criterion

 $\overline{\Gamma}_{d} = \frac{\sum_{nb} \Gamma_{d} A_{i}}{\sum_{nb} A_{i}}$

$$\frac{\partial \alpha_{a}}{\partial t} + \nabla \cdot \left(\overline{U}_{a} \alpha_{a} \right) + \overline{\Gamma}_{d} \nabla \cdot \left(\overline{U}_{c} \alpha_{a} \left(1 - \alpha_{a} \right) \right) = 0$$

$\Gamma_{\! d}$ switch factor, that

$$\Gamma_{d} = f\left(\alpha_{a}, \nabla \alpha_{a}, a_{i}, \Delta V, \dots, We\right)$$

- ... carries the information about the interface shape
- ...quantifies the local dispersion of the two-phase flow structure
- ...estimates the interface reconstruction correctness of the VOF method

Numerical Results

• Prototype Examples – HIRES-TFM

Numerical Results

• Prototype Examples – HIRES-TFM

CFD in Chemical Reaction Engineering V – June 15-20, 2008

0.1 s

Numerical Results

• Prototype Examples – HIRES-TFM

Outlook

• Plans – HIRES-TFM

simulation of a lab-scale bubble column with sparger

vs. experimental validation

H = 2000 mm D = 200 mm d_h = 10 mm

CFD in Chemical Reaction Engineering V – June 15-20, 2008

200 mm

Outlook

• Future Challenges – HIRES-TFM

Thanks for your attention...

Acknowledgements

- Prof. Dr.-Ing. Olaf Hinrichsen & Prof. Wolfgang Polifke (TU München)
- Dr. Henry G. Weller (OpenCFD Ltd.)
- Prof. Dr. Hrvoje Jasak (FSB Zagreb, Wikki Ltd.)

Contact

Dipl.-Ing. Holger Marschall Lehrstuhl I für Technische Chemie Technische Universität München Lichtenbergstr. 4 D-85747 Garching

Tel.: +49 89 289-13512 Email: holger.marschall@ch.tum.de