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Background
Phenomenology of Multiphase-Flows – Process Technology
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Motivation
Phenomenology of Multiphase-Flows – Bubble Column Reactors
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&
GV

[Fan, 1990], [Mudde, 2003]
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[Fan, 1990], [Mudde, 2003]

§ fluid dynamics of two-phase 
flow systems in process 
apparatus and chemical 
reactors with transient flow 
structures

§ fluid dynamics, reaction and
mass transfer at gas-liquid
interfaces of two-phase flow 
systems with spatial and/or
temporal scales over more 
than 6 orders of magnitude
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reactor inlet
modelling, empiricism

reactor interior
flow structure n reactor performance

requirements
§ Higher Accuracy, Cutback of Conservatisms & Uncertainties
§ Portability to New Geometries and Range of Parameters
§ Enhanced Scale-Up Options

Problem Statement 
State-of-the-Art – Current Frontiers
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- porous plates, perforated plates, 
single orifice nozzles

- multiple orifice nozzles, perforated rings,
spider-type spargers

vortex shedding

g/l interface
wake interface
particle flow

slurry-
concentration

high
low
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entity tracking models (EL)
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DegreeDegree of Detail &of Detail &
Computational CostsComputational Costs

Modelling EffortModelling Effort &&
ComplexityComplexity

Problem Statement
State-of-the-Art – Hierarchy of Numerical Methods

macroscopic & mesoscopic level

interface resolving methods (EE)

field averaging models (EE)

[Paschedag, 2007]

Lattice Boltzmann

Monte Carlo

microscopic level
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Problem Statement
Hybrid Approach

⇒ HIRES-TFM = Hybrid Interface-Resolving Two-Fluid Model
• interface resolving algorithm VOF for free surface flow regions 

as long as local computational grid density allows interface capturing 
• extended two-fluid model TFM for dispersed flow regions

where dimensions of fluid parts are comparable to or smaller than grid spacing

[Tomiyama, 1998]

à challenge
• Multiscale CMFD
• Large-scale CMFD

à conceptual approach
• adaptive:

as coarse as possible &
as detailed as required
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Problem Statement
Hybrid Approach

à challenge
• Multiscale CMFD
• Large-scale CMFD

à conceptual approach
• adaptive:

as coarse as possible &
as detailed as required TFM ITFM I

TFM IITFM II

VOFVOF

TFMTFM

VOFVOF

⇒ HIRES-TFM = Hybrid Interface-Resolving Two-Fluid Model
• interface resolving algorithm VOF for free surface flow regions 

as long as local computational grid density allows interface capturing 
• extended two-fluid model TFM for dispersed flow regions

where dimensions of fluid parts are comparable to or smaller than grid spacing
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- interfacial friction

- interfacial tension

- turbulence

- mass transfer

- economic resolution of 
interfacial structures 
and dynamics: local adaptive
mesh refinement (AMR)

- interfacial forces
• drag force
• non-drag forces

(lift force, turbulent drag force)

- polydispersity
• (class method)
• (method of moments)
• (Monte-Carlo method)
• interfacial area conc.

- coalescence and breakup

- turbulence incl. BIT

- mass transfer

TFM

bubbleFoamExt

VOF

interFoamExt

TFM ITFM I

TFM IITFM II

VOFVOF

HIRES-TFM

Problem Statement
Hybrid Approach

Background & Motivation • Problem Statement • Governing Equations • Numerical Results • Outlook
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- continuity equation

- momentum equation

- topological equation (continuity)

- mixture density & mixture viscosity

- phase fraction equation (continuity)

- momentum equation

Background & Motivation • Problem Statement • Governing Equations • Numerical Results • Outlook

Governing Equation 
Coupling of the VOF method and the TFM – basic equations
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+ constitutive equations
interfacial momentum transfer

+ model equation
interfacial tension

VOF TFM
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- scalar flux second-moment closure 
in complex combustion models for
turbulent flames

• relative velocity between
burnt and unburnt gases

• progress variable

rU

%c

( )∇ ⋅ −% % (1 )r c cU

• problem of VOF methods: 
accuracy and reliability of the numerical approach to ensure the interface remains sharp

• basic idea for a sharp interface: 
convective transport term, counter gradient (against num. diffusion), conservative & bounded

Background & Motivation • Problem Statement • Governing Equations • Numerical Results • Outlook

Governing Equation 
Coupling of the VOF method and the TFM – interface compression
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Governing Equation 
Coupling of the VOF method and the TFM – interface compression

- convection-based sharpening 
algorithm in the phase fraction 
equation for interface capturing

• artificial compression 
term acting normal to the 
interface

• volume fraction of phase a
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Governing Equation 
Coupling of the VOF method and the TFM – switch criterion

( ) ( )( )α
α α α

∂
+ + −Γ =

∂
∇ ⋅ ∇ ⋅ 1 0 d

a
a a c a at

U U

( )α αΓ = ∇ ∆, , , ,...,d a a if a V We

Γ
Γ =

∑

∑

d i
nb

d

i
nb

A

A

switch factor, that

- … carries the information 
about the interface shape

- …quantifies the local 
dispersion of the two-
phase flow structure

- …estimates the interface 
reconstruction correctness 
of the VOF method

dΓ
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Numerical Results

• Prototype Examples – HIRES-TFM 
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Interaction among a 5 mm bubble 
and many small bubbles of 0.25 mm 
in diameter in a 2D air-water system 
[Tomiyama, 2003]

5 mm

20 mm

45 m
m

50 m
m

small bubble region
d = 0.3 mm
3% gas fraction

sb

large bubble region
d = 5.0 mm
100% gas fraction

lb
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Numerical Results

• Prototype Examples – HIRES-TFM 
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Numerical Results

• Prototype Examples – HIRES-TFM 
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t=0s t=0.1s t=0.2s
30 mm

100 m
m

small bubbles
d = 0.3 mm
5% gas fraction

sb

large bubbles
d  = 6-10 mm
100% gas fraction

lb
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Outlook
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• Plans – HIRES-TFM
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vs. experimental 
validation

simulation simulation of of 
a laba lab--scale scale 
bubble column bubble column 
with spargerwith sparger
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• Future Challenges – HIRES-TFM

spray spray formationformation & & jetsjets phase inversionphase inversion
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Thanks for your attention…
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