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CFD software (e.g. FLUENT™)

v Calculation of flow field

v" Calculation of particle tracks
(e. g. Euler-Lagrange)

v"Interactions between phases
(e. g. Euler-Euler)

1 = — Breakup / coalescence
1 ‘ (Population balances)
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Outline

= Basics

= Population theory
= Solution strategy
= Results

= Summary and Outlook
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Basics — Separation Processes
in Hydrocyclones

 w

= Continuous separators

Overflow V,

Inlet V;,

Underflow Vu
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Basics — Separation Processes imyvli
in Hydrocyclones

= Continuous separators = Separation due to density difference
= Phase with higher density:

Overflow V,

Accumulation to larger radii
(here: dispersed water
droplets)

Inlet V;,

(o™,

/
|

Phase with lower density:
Transport to smaller radi
(here: continuous diesel fuel)
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Calculation of particle tracks
using Euler-Lagrange model

“big” particle/droplet

Underflow V,, “small” particle/droplet
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Basics — Separation Processes
Without Particle-Particle Interaction
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1 10 100 1000 e. g. stable droplets at
Droplet size d, [um]

o
—

Cumulative size distribution Qz(d,) [1]

low concentrations

f = integral droplet mass fraction overflow
= g = integral droplet mass fraction underflow

g- Qu(dp )
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Basics — Separation Processes
With Particle-Particle Interaction
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Droplet size d, [um]

Qin(dp) ¢
i Qo(dn) =4 Qu(dn)

Interaction

Cumulative size distribution Qz(d,) [1]

e. g. interacting droplets

g- Qu(dp )
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Basics — Separation Processes
With Particle-Particle Interaction
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Interaction

Qin(dp)

Qreal (dp ) =

i Qo(do) =4 Qu(dp)

e. g. interacting droplets

Meyer: PhD Thesis (2001)
University of Hannover

Qu.(d,)
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Basics — Separation Processes
With Particle-Particle Interaction
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Interaction

Cumulative size distribution Qz(d,) [1]

e. g. interacting droplets

Meyer: PhD Thesis (2001)
University of Hannover
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= Shift of droplet size distribution Hulburt, H. M., Katz, S.
Chemical Engineering Science 19 (1964), 555-574

with time and position is described
by population balances

" Droplet mass as characteristic
particle property

= Balancing of number density
distribution F, [1/m=3] of each
droplet size class i
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Population Theory

.

= Shift of droplet size distribution Hulburt, H. M., Katz, S.
with time and position is described Chemical Engineering Science 19 (1964), 555-574

by population balances

" Droplet mass as characteristic
particle property

= Balancing of number density
distribution F, [1/m=3] of each
droplet size class i

o(pF)
ot

Birth Terms B(F)
Droplet Coalescence

+V-(pViR) Death Terms D(F))

_—""| Droplet Breaku

N\ [

~B" (F)-B"(F)+D" (R)-D"(R)
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= Shift of droplet size distribution

with time and position is described

by population balances

7 A
= Droplet mass as characteristic Generation by breakup

particle property ‘
= Balancing of number density @
distribution F, [1/m=3] of each
droplet size class i
0 (pF -
2P8) v (pu) O

~B*(F)-B(F) D" (R)
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= Shift of droplet size distribution

with time and position is described

by population balances

I\
= Droplet mass as characteristic Generation by breakup
particle property ‘
= Balancing of number density @
distribution F, [1/m=3] of each 4 r
droplet size class i Generatioln by C({alescence

@w-(pviﬁ) O*< O O
8" (R)-B™ (R) Bl
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= Shift of droplet size distribution

with time and position is described

by population balances

" Droplet mass as characteristic
Reductlon by coalescence

particle property
= Balancing of number density @
distribution F, [1/m=3] of each

droplet size class i

a(pF)
ot

-8' (F) 0" (R)-D" (R)
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= Shift of droplet size distribution

with time and position is described

by population balances

" Droplet mass as characteristic Reductio: by ;)alescence
particle property

/
= Balancing of number density @
distribution F, [1/m=3] of each i

droplet size class i Reduct&)n by¥breakup

%W-(p\?ﬁ) O O O
m*<m
-8 (f) {8 (Bl 0" () {0 (5
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= Shift of droplet size distribution

with time and position is described

by population balances

" Droplet mass as characteristic Reductio: by ;)alescence
particle property

/
= Balancing of number density @
distribution F, [1/m=3] of each i

Reduction by breakup

droplet size class i ¥
a(gtﬁ)+V°(P\7iFi):iBi (R)+D* (R) om*<mO O
|

> Description by interaction kinetics
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Population Theory

Generation by
coalescence

Reduction by
coalescence

Generation by
breakup

Reduction by
breakup
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Population Theory imvi
= Kinetic approach of Coulaloglou/Tavlarides
Chemical Engineering Science 32 (1977), 1289-1297
= Strongly empirical

= Influence of turbulence on droplet
breakup is not considered

= Kinetic approach of Lehr
(PhD Thesis (2001) University of Hannover, Germariy)

= Definition of critical velocity f X
(only dependent of disperse phase)

= Influence of turbulence on droplet o O O
breakup is considered m*<m

Institute of Mechanical Process Engineering, University of Stuttgart, Germany
ECI Conference Computational Fluid Dynamics in Chemical Reaction Engineering V, Whistler, British Columbia, Canada



Droplet Reduction by Separation '(7]

= Relative transport of droplets with respect to mean flux driven by centrifugal

forces results in droplet separation at the cyclone walls and at the underflow

- “Drift flux” described by transport laws for drag force

_ 1 Pddpipg—pPm= Vtm
Virel,i = ey

Yaaa
18cp um Pd aq D¢

- Droplet separation as further contribution to the death term D™ (R)
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Droplet Size Discretization

W

= Non-equidistant droplet size discretization with discrete droplet size classes

= C(Close size intervals with small droplets due to their high number concentration

= Numerical correction to keep the droplet mass constant

coalescence
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Solution Strategy -7

Flow field simulation with multiphase mixture model in FLUENT™

= Discretization of droplet size distribution into n droplet size classes

= Each droplet size class corresponds to a quasi continuous phase |
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Solution Strategy

N

Flow field simulation with multiphase mixture model in FLUENT™

= Discretization of droplet size distribution into n droplet size classes
" Each droplet size class corresponds to a quasi continuous phase |

" Solution of phase averaged mass and momentum balance of
the mixture (n + 1 phases) with Reynolds-Stress-Model

= Solution of transport equation for volume phase fraction o, of each phase i

0 (pmai)
ot

+V - (pmVio) = #B% (o) £ D* (oy)
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Solution Strategy ‘(7]

Flow field simulation with multiphase mixture model in FLUENT™

= Discretization of droplet size distribution into n droplet size classes

" Each droplet size class corresponds to a quasi continuous phase |

" Solution of phase averaged mass and momentum balance of

the mixture (n + 1 phases) with Reynolds-Stress-Model

= Solution of transport equation for volume phase fraction o, of each phase i

Droplet volume V,, ;

_/

6 :
el (PmVic) = £B% (o) £ D (o)
- - &
corresponding o
g
o(pF)
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Coupling condition



Solution Strategy -7 ]

Calculation of droplet interaction kinetics

and droplet separation
with user defined subroutines
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Solution Strategy -7

Calculation of droplet interaction kinetics

and droplet separation
with user defined subroutines

Implementation into
birth and death terms

a(pmoci)

ot +V (pmviai) = iBi (OLi) + Di (Oti)
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Solution Strategy -(7

Calculation of droplet interaction kinetics

and droplet separation
with user defined subroutines

Implementation into
birth and death terms
O (pm .
% +V (pmVioy) = B (05) £ D™ (oy)
Coupled solution

of the flow field with
population balances in FLUENT™
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Results — Cyclone Geometries

LA L, 94
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Conventional geometry Geometry with double cone (Smyth)
Proc. 27 Int. Conf. on Hydrocyclones (1984),
Institute of Mechanical Process Engineering, University of Stuttgart, Germany 177-190, Bath, UK
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Results — Cyclone Geometries

Cyclone separators
L\ ) with one or two inlets - J”“
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Results — Phase Properties

B

Density difference Ap=170 kg/m3, interfacial tension =0.015 N/m

Separation of water droplets from diesel fuel

1,0 - -
— | v g
: . : : A X Q (d_ =300um) _
Droplet size distribution inlet: ~ n_St .
S 08y ¥
Mean diameter d;,,=300um = ”
3 ¥ ‘
Logarithmical discretization S 04t ]
: : N X
Into n=19 droplet size classes @ ”
©
S 02r -
g _ lﬂé'é _
=
0,0 ! N
10 100 1000

Droplet size dp [um]
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Results —
Two Different Cyclone Geometries
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Results —
One and Two Cyclone Inlets

B

1,0 ——————

T

=300um)

-
o

X Q (d

50e ; X Qin(d50e=300um) "B

08| @ Qr(dp), ex-penmc?nt 08L | m Q(d p) experiment 3

| — Qr(dp), simulation L (| s Qr(dp)’ simulation ]

06F [y . L |
Vin =0.1m3/h 08 v =0.1ma3/h %

0,4

0,2

Integral size distribution Q(d ) [1]

Integral size distribution Q(d ) [1]

0,0

0,

100 T 1000

—_
o

100 o 1000
Droplet size dp [um]

=}

N

second
Inlet

—_
o

Reduced droplet breakup =5
>

!
]
I
w
!
|
!
Increased droplet coalescence |
!

Institute of Mechanical Process Enginéering, University of Stuttgart, Germany
ECI Conference Computational Fluid Dynamics in Chemical Reaction Engineering V, Whistler, British Columbia, Canada



Results — Phase Distribution
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Results — Phase Distribution
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Summary and Outlook -(7]

= Development of new method for coupled solution of population balances with

flow field
= Modelling of droplet breakup and coalescence
= Describing impact of droplet interactions on separation process

= Good agreement between simulation and experiment
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Summary and Outlook ‘(7]

= Development of new method for coupled solution of population balances with

flow field
= Modelling of droplet breakup and coalescence
= Describing impact of droplet interactions on separation process

= Good agreement between simulation and experiment

="  Further activities

Direct numerical simulation (DNS) of droplet-droplet interactions for definition
of kinetics (Empirical assumptions are no longer required for the solution of
population balances)
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Discretization — 3D ‘( 7,

= Partially structured grid — cross-section at the inlet region
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Resul!:s 5 imvT
Velocity and Pressure Distribution
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Kinetic Approaches -(7

= Daughter droplet distribution according to Chatzi

= Daughter droplet distribution according to Lehr

. 3/5 2
exp| — In{z%d(pcj 82/5j|
5 4 c

B(m,m*)= - =

- e
n2/3(d )” Pd [1+erf {3|n{21/15d*(%j3/5 :2/5 H]
2 c
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Kinetic Approaches —
Coulaloglou and Tavlarides

= Breakup frequency

-1/3
Onr (d)=C exp| —-C

= Collision frequency

L3
Qeoll (d’ d *) =C3

(d2 +(d *)2)(d2/3 +(d *)2/3)1/2

1+a
= Coalescence efficiency
4
Ne Pe € d-d*
A(d,d*)=exp| -Cy ( j
(@.47) { o? (1+o)\d+d>
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Kinetic Approaches — Lehr

&

715 9/5
p_c) (19/15 \/E(Gj 1

exp| ——| —

= Breakup frequency

Opr (d) =0.5- d5’3(

= Coalescence function

(d,d¥) = .(d, %) oy (d, 4 )
OL1/3

2
T 22 i O‘%n/a?(
:Z(d+d) min(V,, Vit ) EXP —(—1}
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Kinetic Approaches — Lehr

B

= Characteristic and critical velocity

V., = max \/581/3\/d2/3+(d*)2/3, V—V™

_/

~—— : —
turbulent fluctuation velocity relative velocity

Vit =0.05m/s  parameter, dependent on material data

= Coalescence close to walls and in the overflow/underflow region

= With high energy dissipation rate close to walls
characteristic velocity > critical velocity

—> coalescence function only dependent on material data
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Non-equidistant Droplet Size Discretiza.( Z, ]

= Coalescence correction term

coal My +M,

Kadd =
1 m;
= Breakup correction term
br m;
Ki" =— '
2. v B(me,m;) Amy my
k=1
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