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Calculation of flow field

Calculation of particle tracks 

(e. g. Euler-Lagrange)

Interactions between phases 

(e. g. Euler-Euler)

– Breakup / coalescence

(Population balances)

CFD software (e.g. FLUENTTM)

Modelling of liquid-liquid separation with particle-particle interaction
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Goals

User defined functions (UDF)

Breakup / coalescence 
(Population balances)

Separation process

Calculation of flow field

CFD software (e.g. FLUENTTM)

Modelling of liquid-liquid separation with droplet-droplet interaction 
in a hydrocyclone with direct impact of a non-homogeneous flow field
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Basics – Separation Processes 
in Hydrocyclones 

Continuous separators

Overflow

Underflow

Inlet
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Basics – Separation Processes 
in Hydrocyclones

Overflow

Underflow

Inlet

Continuous separators
&
oV

&
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Calculation of particle tracks 

using Euler-Lagrange model

“big” particle/droplet

“small” particle/droplet

Separation due to density difference

Phase with higher density:

Accumulation to larger radii

(here: dispersed water 

droplets)

Phase with lower density:

Transport to smaller radii

(here: continuous diesel fuel)

&
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Basics – Separation Processes 
Without Particle-Particle Interaction

e. g. stable droplets at 

low concentrations

f = integral droplet mass fraction overflow

g = integral droplet mass fraction underflow 
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e. g. interacting droplets

Basics – Separation Processes 
With Particle-Particle Interaction
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Qreal (dp ) =
f · Qo(dp ) + g · Qu(dp )

g · Qu(dp )
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e. g. interacting droplets

Basics – Separation Processes 
With Particle-Particle Interaction

Meyer: PhD Thesis (2001) 
University of Hannover
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Shift of droplet size distribution 

with time and position is described 

by population balances

Droplet mass as characteristic 

particle property 

Balancing of number density 

distribution Fi [1/m³] of each 

droplet size class i

Population Theory

Hulburt, H. M., Katz, S.
Chemical Engineering Science 19 (1964), 555-574
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Shift of droplet size distribution 

with time and position is described 

by population balances

Droplet mass as characteristic 

particle property 

Balancing of number density 

distribution Fi [1/m³] of each 

droplet size class i

Population Theory

Birth Terms B(Fi)
Droplet Coalescence

Death Terms D(Fi)
Droplet Breakup

Hulburt, H. M., Katz, S.
Chemical Engineering Science 19 (1964), 555-574
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Population Theory
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Reduction by breakup

Population Theory

Reduction by coalescence

Shift of droplet size distribution 

with time and position is described 

by population balances

Droplet mass as characteristic 

particle property 

Balancing of number density 

distribution Fi [1/m³] of each 

droplet size class i
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Description by interaction kinetics
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Population Theory
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Kinetic approach of Coulaloglou/Tavlarides
Chemical Engineering Science 32 (1977), 1289-1297

Strongly empirical

Influence of turbulence on droplet 
breakup is not considered

Kinetic approach of Lehr 
(PhD Thesis (2001) University of Hannover, Germany)

Definition of critical velocity 
(only dependent of disperse phase)

Influence of turbulence on droplet 
breakup is considered

Population Theory

m

m*>m

m*<m
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Droplet Reduction by Separation

Relative transport of droplets with respect to mean flux driven by centrifugal 

forces results in droplet separation at the cyclone walls and at the underflow

“Drift flux” described by transport laws for drag force

Droplet separation as further contribution to the death term ( )iD F−
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Droplet Size Discretization

Non-equidistant droplet size discretization with discrete droplet size classes

Close size intervals with small droplets due to their high number concentration

Numerical correction to keep the droplet mass constant



Institute of Mechanical Process Engineering, University of Stuttgart, Germany
ECI Conference Computational Fluid Dynamics in Chemical Reaction Engineering V, Whistler, British Columbia, Canada

Solution Strategy

Flow field simulation with multiphase mixture model in FLUENTTM

Discretization of droplet size distribution into n droplet size classes

Each droplet size class corresponds to a quasi continuous phase i 
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Flow field simulation with multiphase mixture model in FLUENTTM

Discretization of droplet size distribution into n droplet size classes

Each droplet size class corresponds to a quasi continuous phase i

Solution of phase averaged mass and momentum balance of 

the mixture (n + 1 phases) with Reynolds-Stress-Model

Solution of transport equation for volume phase fraction αi of each phase i

Solution Strategy
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Droplet volume

Solution Strategy
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Flow field simulation with multiphase mixture model in FLUENTTM

Discretization of droplet size distribution into n droplet size classes

Each droplet size class corresponds to a quasi continuous phase i

Solution of phase averaged mass and momentum balance of 

the mixture (n + 1 phases) with Reynolds-Stress-Model

Solution of transport equation for volume phase fraction αi of each phase i

corresponding i,p

i
i V

F
α

=

Coupling condition

p,iV
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Solution Strategy

Calculation of droplet interaction kinetics 

and droplet separation

with user defined subroutines
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Solution Strategy

Calculation of droplet interaction kinetics 

and droplet separation
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Implementation into 

birth and death terms
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Calculation of droplet interaction kinetics 

and droplet separation

with user defined subroutines

Implementation into 

birth and death terms

Coupled solution

of the flow field with                          

population balances in FLUENTTM

Solution Strategy
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Results – Cyclone Geometries

Conventional geometry Geometry with double cone (Smyth)
Proc. 2nd Int. Conf. on Hydrocyclones (1984), 

177-190, Bath, UK
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Results – Cyclone Geometries

Conventional geometry Geometry with double cone (Smyth)
Proc. 2nd Int. Conf. on Hydrocyclones (1984), 

177-190, Bath, UK

Cyclone separators 
with one or two inlets
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Separation of water droplets from diesel fuel

Density difference ∆ρ=170 kg/m³, interfacial tension σ=0.015 N/m

Droplet size distribution inlet:

Mean diameter d50e=300µm

Logarithmical discretization

into n=19 droplet size classes 

Results – Phase Properties
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A

A

m³/h1.0Vin =&

Results –
Two Different Cyclone Geometries 

m³/h1.0Vin =&

Reduced droplet breakup

Increased droplet coalescence
double cone
geometry
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m³/h1.0Vin =&

Results –
One and Two Cyclone Inlets 

m³/h1.0Vin =&

Reduced droplet breakup

Increased droplet coalescence

A

A

A

A

second
inlet
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Results – Phase Distribution

µm805d 19, phase =p

m³/h1.0Vin =&

A

A

phase fraction
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A

A

phase fraction i i d P,i i(B D ) V m+ −− ⋅ ρ ⋅ ⋅ ∆

m³/h1.0Vin =&

µm805d 19, phase =p

Results – Phase Distribution
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Summary and Outlook

Development of new method for coupled solution of population balances with 

flow field

Modelling of droplet breakup and coalescence

Describing impact of droplet interactions on separation process

Good agreement between simulation and experiment
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Development of new method for coupled solution of population balances with 

flow field

Modelling of droplet breakup and coalescence

Describing impact of droplet interactions on separation process

Good agreement between simulation and experiment

Further activities

Direct numerical simulation (DNS) of droplet-droplet interactions for definition 

of kinetics (Empirical assumptions are no longer required for the solution of 

population balances)

Summary and Outlook
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Partially structured grid – cross-section at the inlet region

Discretization – 3D
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Results
Velocity and Pressure Distribution
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Daughter droplet distribution according to Chatzi

Daughter droplet distribution according to Lehr

Kinetic Approaches
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Breakup frequency

Collision frequency

Coalescence efficiency

Kinetic Approaches –
Coulaloglou and Tavlarides
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Breakup frequency

Coalescence function

Kinetic Approaches – Lehr
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Characteristic and critical velocity

Kinetic Approaches – Lehr

( )2 / 31 / 3 2 / 3
c

relative velocityturbulent fluctuation velocity

v max 2 d d * , v v *
⎛ ⎞
⎜ ⎟= ε + −⎜ ⎟⎜ ⎟
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1424314444244443

Coalescence close to walls and in the overflow/underflow region 

With high energy dissipation rate close to walls 

characteristic velocity > critical velocity 
coalescence function only dependent on material data

critv 0.05m / s= parameter, dependent on material data
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Coalescence correction term

Non-equidistant Droplet Size Discretization

Breakup correction term
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