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• more mix/rxn physics: LES with manifold methods

• uncertainty quantification: verification & validation
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quantified predictivity with 
uncertainty assessment     
(trends not enough)

source: GeographyAcademy
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Simulation Prediction Uncertainty
  = f(numerical error , modeling error , b.c. uncertainty, experimental/calibration error )
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Leveraging Moore’s Law for 
Chemical Reaction Engineering

• today’s problems require V&V / 
uncertainty quantification              
for each prediction

• consistency requirements using all 
data (simulation & experimental)

• resolve more physics (i.e. LES)

• manifold methods for reduced dof  
models

• room for contributions
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