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Simulation & Egperiment: quantifiable predictivity

 simulation is increasingly being
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« multidisciplinary problems
(expensive function evaluations) that
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Manifold Models:
B--teaain & Mie

PCA for Data Conditioned on Mixture Fraction

| [ I | I
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unresolved scales A
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Manifold Models:

Fo e & Mix

. o Appro h Genere e i Scree graph for the covariance matrix
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*SGS manifold span
unresolved scales T ‘ 82%

eCanonical flames to ge 9%
SGS data (flamelets, O A _
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Manifold Models: . —

T e & Mig
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Principal Compoent Analysis (PCA)

»Size reduction via PCA:

—PCs defined by the linear transformation
Z=XA ® X=ZA" being A7 =A"

—X can be approximated by a subset A, (q<<p), of A

X = Xq = ZAq
PCA Rotation Size reduction
7 =XA=X all a12\|T Zq=XAq=1=X all\T
doi o ) as1 )

PCA: SIZE REDUCTION PROCESS >
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Principal Compoent Analysis (PCA)

SING THE VQ ALGORITHM, PARTITION IS NOT INDEPENDENT OF THE
FOLLOWING PROJECTION ONTO THE LOW-DIMENSIONAL SUBSPACE

- Y,
PCA Rotation Size reduction
7 =XA=X all a12\|T Zq=XAq=1=X all\T
doi o ) as1 )
|
q=1 = ZA§=1 = Z(an a12)
° : o.o.o.o.o: : a 1
T >

PCA: SIZE REDUCTION PROCESS
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VQPCA Results of DNS flame with significant extinction

d=4 and k=8, €asre,n= 0.04
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VQPCA Results of DNS flame with significant extinction

d=4 and k=8, €asre,n= 0.04

VQPCA T field, g=4 & k=8, t=2.0e-03 s
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VQPCA Results of DNS flame with significant extinction

d=4 and k=8, €asre,n= 0.04

N Y
Original T field, t=1.5e-03 s VQPCA T field, g=4 & k=8, t=1.5e-03 s
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Oxy-Coal Near Burner Simulation:
can LES predict net heat flux from a new oxy-coal retrofit?

- Voo
5y e \"
by
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Oxy-Coal Near Burner Simulation:
can LES predict net heat flux from a new oxy-coal retrofit?

{ Simulation Prediction Uncertainty
= f(numerical error , modeling error , b.c. uncertainty, experimental/calibration error )
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Overarching Problem

prediction of heat flux, O2 &

emissions (soot/smoke, CO)

from over & under ventilated
fires in target enclosure

Benchmark f \ f N

Cases Underventilated

: Overventilated
Fires

Fires

enclosures, flame
spread

open pool fires

Scale- f |
bridging Radiation SGS Mixing & Nonreacting LES
models Models Reaction Models Models & Algorithms
gas & particle soot & gas-phase turbulent diffusion
participating chemistry, unresolved closure, solution
media turbulent mixing algorithms
Molecular- " Kinetics & Thermophysical |
scale Properties
Models
chemical kinetics, transport
properties, thermodynamic
INSTITUTE FOR .
Clean and Secure Energy properties, and surrogate fuel
' THE UNIVERSITY OF UTAH i formulation |
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Overarching Problem

prediction of heat flux, O2 &

emissions (soot/smoke, CO)

from over & under ventilated
fires in target enclosure

Benchmark
Cases

Scale-
bridging
models

Molecular-
scale
Models

physical |
world

computerized

4
code - dj‘

after Oberkampf & Trucano,
Sandia National Labs

properties, and surrogate fuel
formulation




V&V

Overarching Problem

prediction of heat flux, O2 &

emissions (soot/smoke, CO)

from over & under ventilated
fires in target enclosure

\ W,

 \erification: The process of
determining the degree to
which a model implementation gk
accurately represents the
mathematical description of .
the conceptual model from the Pcvifri%a' \
perspective of the intended
uses of the model.

o simujatic
o validatig

models (exper me

computerized

Molecular-
scale
Models

after Oberkampf & Trucano,
Sandia National Labs

THE UNIVERSITY OF UTAH formulation
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V&V

Overarching Problem

prediction of heat flux, O2 &

emissions (soot/smoke, CO)

from over & under ventilated
fires in target enclosure

\_ v,

 \erification: The process of
determining the degree to
which a model implementation
accurately represents the
mathematical description of
the conceptual model from the physical

Benchmark
Cases

perspective of the intended ond & A
uses of the model. | 4 /i
* Validation: The process of e %{'(['?fl(l gt[l n |
TaY Rt clllQ Ll
determining the degree to ridging (experymeng

which a model is an accurate
representation of the real
world from the perspective of
the intended uses of the
model.

Molecular-

: i« L S after Oberkampf & Trucano,
scale r .| R Sandia National Labs
Models < =
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arching Pro

prediction of heat flux, O2 &

emissions (soot/smoke, CO)

from over & under ventilated
fires in target enclosure

physical

simufatio
validatio
(experyment§

computerized

after Oberkampf & Trucano,
Sandia National Labs

f (verification error , modelingerror , b.c. uncertainty, experimental error )

lots of computer time
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Benchmark I |
Cases :
Under\{entllated Overventilated
Fires Fires
enclosures, flame ,
spread open pool fires
bridging Radiation SGS Mixing & Nonreacting LES
models Models Reaction Models Models & Algorithms
gas & particle soot & gas-phase turbulent diffusion
participating chemistry, unresolved closure, solution
media turbulent mixing algorithms
Molecular- ' Kinetics & Thermophysical ‘

Models

chemical kinetics, transport
properties, thermodynamic
properties, and surrogate fuel
formulation




Data Consistency

UofU Axial Oxy-Fired
Burner

temperature, local gas &
condensed phase
composition

gzzgzmark ' Non-reacting | | Gas Phase
Particle-Laden Reaction without
Systems Particles
particle size gas-phase mean
distributions & species &
concentrations temperature
Scale- f i i los | |
bridging Radiation fi== Particle-Lasty Nonreacting LES
Mixing & Reaction :
models Models Models Models & Algorithms
gas & particle turbulent diffusion
participating coal, soot & gas-phase closure, solution
media chemistry, unresolved algo;'ithms
i It turbulent mixing - |

Particle- f ' rSingle Particle Model
scale ) : ;
Models Canonical System with Reaction

soot formation,

detailed state-space devolatilization, char
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Data Consistency

modeling error
b.c. uncertainty

experiment error
numerical error
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Data Consistency

Simulation Output

Uncertainty (" all parameters are

e propogation of optimization within prior bounds

modeling error objective kl,min < kl < kl
b.c. uncertainty
e constrained by /s
experiment error 2
numerical error

,max

<k <k

2., max

,min

all model predictions are
subject to: within experiment bounds

L <M ({k}.) <v;
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Data Consistency

modeling error
b.c. uncertainty

experiment error
numerical error

Range of Y

-

— ;
Priors Posteriors

kqtu Bridging
all model predictions are k1 » u1 —  Scale OUtpius
subject to: within experiment bounds 2 *Up Model 0
T

INSTITUTE FOR Li < Mi ({k} ) < Ui B N
Clean and Secure Energy l Validation & Verification Data + u,
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Data Consistency

modeling error
b.c. uncertainty

experiment error
numerical error

Range of Y

feasible
set

ol prior knowledge

-

— ;
Priors Posteriors

kqtu Bridging
all model predictions are k1 » u1 —  Scale OUtpius
subject to: within experiment bounds 2 *Up Model 0
T

INSTITUTE FOR Li < Mi ({k} ) < Ui B N
Clean and Secure Energy l Validation & Verification Data + u,
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Data Consistency

modeling error
b.c. uncertainty

experiment error
numerical error

Range of Y

all model predictions are
subject to: within experiment bounds

‘gl L: < M. (Rk+v. ) <U.
ugizzzz;’zdmmgy ;< M;({k}) <U;

THE UNIVERSITY OF UTAH
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‘Priors
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Data Consistency

modeling error
b.c. uncertainty

experiment error
numerical error

Range of Y

all model predictions are
subject to: within experiment bounds

‘gl L: < M. (Rk+v. ) <U.
ugizzzz;’zdmmgy ;< M;({k}) <U;

THE UNIVERSITY OF UTAH

feasible

set

;
Posteriors

‘Priors

ks *u Bridging Outout

k1 + u1 — Scale 1 piuu

2= "2 Model o
T
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Data Consistency

modeling error
b.c. uncertainty

experiment error
numerical error

Range of Y

feasible
set

ol prior knowledge

-

— ;
Priors Posteriors

kqtu Bridging
all model predictions are k1 » u1 —  Scale OUtpius
subject to: within experiment bounds 2 *Up Model 0
T

INSTITUTE FOR Li < Mi ({k} ) < Ui B N
Clean and Secure Energy l Validation & Verification Data + u,
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Data Consistency

Information Gain:

modeling error
b.c. uncertainty

experiment error
numerical error

Range of Y

T -1._ Posterior Range

Prior Range e feasible
set

ol prior knowledge

-

— ;
Priors Posteriors

kqtu Bridging
all model predictions are k1 » u1 —  Scale OUtpius
subject to: within experiment bounds 2 *Up Model 0
T

INSTITUTE FOR Li < Mi ({k} ) < Ui B N
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u

require
consistency
between
simulation
data and

experimental
data
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DatayeonsiStency

ror
inty

rror
ror

Information Gain:

Range of Y

~ Posterior Range

Prior Range I(2

ol prior knowledge

I =1

feasible
K

all model predictions are
subject to: within experiment bounds

L; < M;({k}.) <y,

1 set
] ‘Priors Poste'riors
k, £ u Bridging Outout
k1 o u1 — Scale 1 piuu
2-72 Model 0
T
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Error Budget

Exp.
A ARCHES 300° Comp. Dyn. Smag.
___u_ _,p=1
25 - sver
- usver’ p=2
2 - = |
&) _::- || :Zg A H—
= T FH sexhinlll==
> 1.5 = - TH & T
O = 11 M ]|
g - H
O N il
> | -
% —:_:E :I:L::::_
> 1+ _ L
gty
T
0.5 -
0
| | | | | | = :
-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5

radial distance, m

f (verification error , modeling error , b.c. uncertainty, experimental error )
lots of computer time
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Error Budget

A ARCHES 300° Comp. Dyn. Smag.
___u_ _,p=1

sver

___u__,p=2

sver

Range of Y

0.1 0 0.1 0.2 0.3 0.4 0.5
radial distance, m

f (verification error , modeling error , b.c. uncertainty, experimental error )
lots of computer time
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validation hierarchy

Overarching Problem

prediction of heat flux, O2 &

emissions (soot/smoke, CO)

from over & under ventilated
fires in target enclosure

Benchmark f \ f N

Cases Underventilated

. Overventilated
Fires

Fires

enclosures, flame
spread

open pool fires

Scale- f |
bridging Radiation SGS Mixing & Nonreacting LES
models Models Reaction Models Models & Algorithms
gas & particle soot & gas-phase turbulent diffusion
participating chemistry, unresolved closure, solution
media turbulent mixing algorithms

Molecular- Kinetics & Thermophysical
scale Properties
Models

chemical kinetics, transport

properties, thermodynamic
INSTITUTE FOR .
Clean and Secure Energy properties, and surrogate fuel
| THE UNIVERSITY OF UTAH | formulation i




validation hierarchy

Overarching Problem

prediction of heat flux, O2 &

emissions (soot/smoke, CO)
from over & under ventilated

e driven by overarching problem B in target enclosiit
(intended use of simulation)

Benchmark I | f |
Cases .
Undell':\;fenstllated Overventilated
Fires
enclosures, flame ,
spread open pool fires
Scale- f S - . |
bridging Radiation SGS Mixing & Nonreacting LES
models Models Reaction Models Models & Algorithms
gas & particle soot & gas-phase turbulent diffusion
participating chemistry, unresolved closure, solution
media turbulent mixing algorithms

Molecular- Kinetics & Thermophysical
scale Properties
Models

chemical kinetics, transport

properties, thermodynamic
INSTITUTE FOR .
u Clean and Secure Energy properties, and surrogate fuel
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validation hierarchy

Overarching Problem

prediction of heat flux, O2 &

emissions (soot/smoke, CO)
from over & under ventilated

e driven by overarching problem B in target enclosiit
(intended use of simulation)

* hierarchical coupling
Benchmark I | f |
Cases .
Undell':\;fenstllated Overventilated
Fires
enclosures, flame ,
spread open pool fires
Scale- f S - . |
bridging Radiation SGS Mixing & Nonreacting LES
models Models Reaction Models Models & Algorithms
gas & particle soot & gas-phase turbulent diffusion
participating chemistry, unresolved closure, solution
media turbulent mixing algorithms

Molecular- Kinetics & Thermophysical
scale Properties
Models

chemical kinetics, transport

properties, thermodynamic
INSTITUTE FOR .
u Clean and Secure Energy properties, and surrogate fuel
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validation hierarchy

Overarching Problem

prediction of heat flux, O2 &

emissions (soot/smoke, CO)

from over & under ventilated
fires in target enclosure

e driven by overarching problem
(intended use of simulation)

* hierarchical coupling

Benchmark | f N

‘niti ; . Cases .

o definition of each brick: Underventilated B orventilatel

— inputs (priors: new & inherited) Fires Fires

— outputs (posteriors) enclosures, flame .

— data: experiments & simulations spread open pool fires

— UQ/validation analysis

— people 9
Scale- f |
bridging Radiation SGS Mixing & Nonreacting LES
models Models Reaction Models Models & Algorithms

gas & particle
participating
media

soot & gas-phase
chemistry, unresolved
turbulent mixing

Molecular- Kinetics & Thermophysical
scale Properties
Models

turbulent diffusion
closure, solution
algorithms

chemical kinetics, transport
properties, thermodynamic

INSTITUTE FOR .
Clean and Secure Energy properties, and surrogate fuel
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validation hierarchy

Overarching Problem

prediction of heat flux, O2 &

emissions (soot/smoke, CO)

from over & under ventilated
fires in target enclosure

e driven by overarching problem
(intended use of simulation)

* hierarchical coupling

Benchmark | f N
« o . . Cases i
. deflr?ltlon of each bl"l.Ck. | Underventilated B orventilatel
— inputs (priors: new & inherited) Fires Fires
— outputs (posteriors) enclosures, flame .
— data: experiments & simulations spread open pool fires
— UQ/validation analysis
— people 9
 UQ/Validation in eachtbrick o r :
‘ cale-
{ bridging Radiation SGS Mixing & Nonreacting LES
models Models Reaction Models Models & Algorithms
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gas & particle
participating
media

soot & gas-phase
chemistry, unresolved
turbulent mixing

turbulent diffusion
closure, solution
algorithms

Molecular- Kinetics & Thermophysical
scale Properties
Models

chemical kinetics, transport
properties, thermodynamic
properties, and surrogate fuel
formulation




validation hierarchy

Overarching Problem

prediction of heat flux, O2 &
emissions (soot/smoke, CO)

. . from over & under ventilated
e driven by overarching problem fires in target enclosure
(intended use of simulation)
* hierarchical coupling z ;
Benchmark I | I J
e ege . . Cases i
e definition of each brick: Underventilated P erventilatol
— inputs (priors: new & inherited) Fires Fires
- outputs (posteriors) enclosures, flame ,
— data: experiments & simulations spread open pool fires
— UQ/validation analysis
— people L
e UQ/Validation in eac grick o r 1
cale-
. g2 . t) : bridging Radiation SGS Mixing & Nonreacting LES
* quant'f'ab|e Sensi 'V ties models Models Reaction Models Models & Algorithms
— input parameter
_ b.c.’s gas & particle soot & gas-phase turbulent diffusion
) d 1@ participating chemistry, unresolved closure, solution
— Mo es.;\_: A \\ media turbulent mixing algorithms
- numerics = ! ) J & )

Molecular- Kinetics & Thermophysical
scale Properties
Models

chemical kinetics, transport

properties, thermodynamic
INSTITUTE FOR .
u Clean and Secure Energy properties, and surrogate fuel
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validation hierarchy

Overarching Problem

prediction of heat flux, O2 &
emissions (soot/smoke, CO)

: . & und i
» driven by overarching problem B oot onciosdl
(intended use of simulation)
* hierarchical coupling z ;
Benchmark I | f i

e definition of each brick: fekes Underventilated B orventilatel

— inputs (priors: new & inherited) Fires Fires

- outputs (posteriors) enclosures, flame ,

— data: experiments & simulations spread open pool fires

— UQ/validation analysis

— people i
» UQ/Validation in eac 8rick o r 1

AR ¢ cale- S— ~r :
- £ cge g bridging Radiation SGS Mixing & Nonreacting LES

* quant'f'ab|e SenSlth ties models Models Reaction Models Models & Algorithms

— input parameter

— b.c.’s TR gas & particle soot & gas-phase turbulent diffusion

) d 1o participating chemistry, unresolved closure, solution

o s S > \ - g media turbulent mixing algorithms

—~ numerlc‘f & i ) J )
* roadmap: dynamic selection of

ex ts & models Molecular- " Kinetics & Thermophysical |
| 9|</|Ca(|je | Properties
odels

chemical kinetics, transport

properties, thermodynamic
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validation hierarchy

prediction of heat flux, O2 &

emissions (soot/smoke, CO)
from over & under ventilated

° o
¢ dl"lV = 3N roblem - |
Sys o © heat flux and emissions 5 ster:'e heat flux and emissions gm’fe heatﬂ and emissions get enciosure
(soot/smoke, CO, VOCs) 4 (soot/smol k CO, VOCs) 4 (soot/smol k , CO, VOCs)
from over&under [ 4 from o & nder from over&under
ventilated fires in targe entilate df n target ventilated fires in tar v,
enclosure enclosure
7 S z= S Z= - Se
Benchmark Benchmark Bench (
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°
. LES LES
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N, models ™o Bs.ohasechomy uoyant plume TS models buoyant plume model 1 models buoyant plume mode| ted

t N t
SubGrid Scale
Problems
chemical kinetics and transport of gas-phase chemical k etics and transpo "t f 9 -phase chemical k etics and transpol rt f g -phasi
species and soot from fuel surrogates 1 N speci d oot from fuel surrogates speci d oot from fuel surrogates

open pool fires

— UQ/validation analysi

— people ’
‘ ¥
* UQ/Validation in eaci¥brick . ( ( \
. cale-
- £ _ e bridging Radiation SGS Mixing & Nonreacting LES
o a1¢ ' . .
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validation hierarchy

prediction of heat flux, O2 &

emissions (soot/smoke, CO)

from over & under ventilated
fires in target enclosure

\L J

VA

Benchmark i | g |

Cases Underventilated
Fires

Overventilated
Fires

enclosures, flame ]
open pool fires

spread
Scale- i S— K/P% . \
bridging Radiation SGS Mixing & Nonreacting LES
models Models Reaction Models Models & Algorithms
gas & particle soot & gas-phase turbulent diffusion
participating chemistry, unresolved closure, solution
media turbulent mixing algorithms
Molecular- | Kinetics & Thermophysical |
scale Properties
Models
chemical kinetics, transport
properties, thermodynamic
INSTITUTE FOR -
Clean and Secure Energy properties, and surrogate fuel
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C o n C | u S i o n BB Axial Ory.FIFEE

temperature, local gas &
condensed phase
composition

Leveraging Moore’s Law for e o
2 4 4 Cases . .
Chemical Reaction Engineering il Ll <t on
distribations & el
e today’s problems require V&V / e s
uncertainty quantification — : A : ——
for each prediction | | || |
e consistency requirements using all fos & porticlly L.\ 5 oo o i
. . . P megia g chemistry, unrgsplved
data (simulation & experimental) L ) L tbugimin ) L
e resolve more physics (i.e. LES) partile- ' ohysical N
. chlz s Canonical
* manifold methods for reduced dof e . world
models <f.a£2.2°t';‘f’§8'%, F } L td;mth j

e room for contributions tual
conceptua

model

computerized
code
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