Application of the Direct Quadrature Method of Moments to a Hollow-Cone Water Spray

Jesper Madsen, <u>Tron Solberg</u> and Bjørn H. Hjertager Aalborg University Esbjerg, Denmark Homepage: hugin.aue.auc.dk

Danfoss Pressure-Swirl Atomizer

- > Applications
 - Domestic heating burners
- Daily production
 - About 30 000 nozzles
- Characteristics
 - Air-cored vortex
 - Hollow conical sheet
 - Hollow-cone spray
 - Low capacity
 - 1.46 6.55 kg/h
 - Spray angles $-2\theta = 30^{\circ} - 90^{\circ}$

DQMOM-Multi-Fluid Model

- Eulerian multi-fluid model in Fluent 6.2
 - One gas phase
 - *N* distinct droplet phases
 - One phase for each size class
 - Coupled to population balance equations
- Direct Quadrature Method of Moments (DQMOM)
 - Droplet size distribution (DSD)

$$n(d) = \sum_{q=1}^{N} \omega_q \delta \left[d - d_q \right]$$

- Transport equations for weight ω_q and weighted abscissa $\delta_q = \omega_q d_q$
- DSD evolves due to breakup and coalescence

The DQMOM representation of the DSD involves the solution of

Volume fraction,
$$\alpha_q, q \in [1, N]$$

$$\frac{\partial}{\partial t} (\alpha_q \rho_l) + \frac{\partial}{\partial x_i} (\alpha_q \rho_l U_{i,q}) = \frac{\pi}{2} \rho_l d_q^2 S_{\delta_q} - \frac{\pi}{3} \rho_l d_q^3 S_{\omega_q}$$

Diameter,
$$d_q, q \in [1, N]$$

 $\frac{\partial}{\partial t} (\alpha_q \rho_I d_q) + \frac{\partial}{\partial x_i} (\alpha_q \rho_I U_{i,q} d_q) = \frac{2\pi}{3} \rho_I d_q^3 S_{\delta_q} - \frac{\pi}{2} \rho_I d_q^4 S_{\omega_q}$

Source terms S_{ω_q} and S_{δ_q} : From first 2N integer moments $(1-k)\sum_{q=1}^{N} d_q^k S_{\omega_q} + k \sum_{q=1}^{N} d_q^{k-1} S_{\delta_q} = \overline{S}_{m_k}; \quad k \in [0, 2N-1]$

The WAVE atomization model breakup kernel

$$a_{q} = rac{1 - d_{st}/d_{q}}{\left(\left. \overline{b}_{q}^{(2)} \right/ d_{q}^{2} - 1
ight) au_{bu}}, \ d_{st} < d_{q}$$

where τ_{bu} = breakup time d_{st} = stable diameter

Breakup daughter distribution function

Outcome of Collisions

CFD in Chemical Reaction Engineering V, Whistler, BC, Canada, 15-20 June 2008

Collision coefficient:
$$\beta_{pq} = \pi d_{pq}^2 U_{rel}; \quad d_{pq} = \frac{d_p + d_q}{2}$$

Coalescence kernel:
$$c_{pq} = \min(E_{boun}, E_{coal})\beta_{pq}$$

Collision-induced fragmentation kernel: $e_{pq} = (1 - E_{coal})\beta_{pq}$

Diameter of droplet fragments (Post and Abraham, 2002):

$$d_{frag} = \frac{1.89 \left(d_{p}^{3} + d_{q}^{3}\right)^{1/3}}{\sqrt{2.81 W e_{coll}^{2/7} \left(1 + \gamma^{3}\right)^{2/21} + 1}}$$

Linearized Instability Sheet Atomization (LISA) model (Schmidt et al. 1999)

- Film formation
- Sheet breakup and atomization

Initial Droplet Size Distribution

> DDM

- Selected randomly
- Rosin-Rammler volume distribution

> DQMOM

- Rosin-Rammler (RR)
- Li & Tankin (LT) model
- Nodes are calculated from 2*N* moments using the PD algorithm

CFD in Chemical Reaction Engineering V, Whistler, BC, Canada, 15-20 June 2008

Computational Grid

- > Domain (r, x > 4 mm)
 - Axisymmetric
 - Unstructured
 - Fine resolution close to orifice
- DDM Grid
 - Orifice is comprised of one cell
 - Size: 200×200 µm
 - Cells: 3,944

- Sheet is fitted into one cell
- Size: 30×30 µm
- Cells: 5,424

- > Evolution of Sauter Mean Diameter (SMD), d_{32} [µm]
- > Evolution liquid volume fraction (iso-lines: $\alpha_l = 10^{-6}$ and $\alpha_l = 10^{-5}$)

The grid superimposed has a spacing of 50×50 mm

SMD

- Good agreement
- Result of initial DSD
- Effect of DDM collisions model
- DQMOM (RR)
 - Correct trend
 - Slope changes
 - SMD at centerline underpredicted
 - SMD at periphery overpredicted

Axial Velocity

- Reasonable accurate
 - Correct trend
- DQMOM (RR) most accurate
 - Centerline values underpredicted
 - Periphery values overpredicted
 - Finer grid resolution compared to DDM

DSD

- > Axial location x = 80 mm
- Reasonable good agreement
- Experimental results: wider range
- DQMOM-multi-fluid model
 - Nearly monodisperse DSD's
 - No droplet breakup
 - Few collisions
 - Change due to convection
 - Agreement at shorter distances

DQMOM-multi-fluid model applied to a low-speed hollow-cone spray

- Low relative velocities
 - No secondary droplet breakup
- Wide angle spray
 - Few collisions
- DSD determined by primary breakup of the liquid sheet
- Predictions compared to
 - Experimental Phase Doppler Anemometry (PDA) data
 - Fluent Discrete Droplet Model (DDM)
- > The model for the primary breakup of the liquid sheet is important
 - LISA model appears to be valid
- DQMOM with Rosin-Rammler initial DSD shows reasonable results for
 - Axial droplet velocities
 - Sauter mean droplet diameters
 - Droplet size distributions